46 research outputs found

    TASKED: Transformer-based Adversarial learning for human activity recognition using wearable sensors via Self-KnowledgE Distillation

    Full text link
    Wearable sensor-based human activity recognition (HAR) has emerged as a principal research area and is utilized in a variety of applications. Recently, deep learning-based methods have achieved significant improvement in the HAR field with the development of human-computer interaction applications. However, they are limited to operating in a local neighborhood in the process of a standard convolution neural network, and correlations between different sensors on body positions are ignored. In addition, they still face significant challenging problems with performance degradation due to large gaps in the distribution of training and test data, and behavioral differences between subjects. In this work, we propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED), that accounts for individual sensor orientations and spatial and temporal features. The proposed method is capable of learning cross-domain embedding feature representations from multiple subjects datasets using adversarial learning and the maximum mean discrepancy (MMD) regularization to align the data distribution over multiple domains. In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition. Experimental results show that TASKED not only outperforms state-of-the-art methods on the four real-world public HAR datasets (alone or combined) but also improves the subject generalization effectively.Comment: 17 pages, 5 figures, Submitted to Knowledge-Based Systems, Elsevier. arXiv admin note: substantial text overlap with arXiv:2110.1216

    Learning Graph Patterns of Reflection Coefficient for Non-destructive Diagnosis of Cu Interconnects

    Full text link
    With the increasing operating frequencies and clock speeds in processors, interconnects affect both the reliability and performance of entire electronic systems. Fault detection and diagnosis of the interconnects are crucial for prognostics and health management (PHM) of electronics. However, traditional approaches using electrical signals as prognostic factors often face challenges in distinguishing defect root causes, necessitating additional destructive evaluations, and are prone to noise interference, leading to potential false alarms. To address these limitations, this paper introduces a novel approach for non-destructive detection and diagnosis of defects in Cu interconnects, offering early detection, enhanced diagnostic accuracy, and noise resilience. Our approach uniquely analyzes both the root cause and severity of interconnect defects by leveraging graph patterns of reflection coefficient, a technique distinct from traditional time series signal analysis. We experimentally demonstrate that the graph patterns possess the capability for fault diagnosis and serve as effective input data for learning algorithms. Additionally, we introduce a novel severity rating ensemble learning (SREL) approach, which significantly enhances diagnostic accuracy and noise robustness. Experimental results demonstrate that the proposed method outperforms conventional machine learning methods and multi-class convolutional neural networks (CNN), achieving a maximum accuracy of 99.3%, especially under elevated noise levels

    Learning from the Best: Contrastive Representations Learning Across Sensor Locations for Wearable Activity Recognition

    Full text link
    We address the well-known wearable activity recognition problem of having to work with sensors that are non-optimal in terms of information they provide but have to be used due to wearability/usability concerns (e.g. the need to work with wrist-worn IMUs because they are embedded in most smart watches). To mitigate this problem we propose a method that facilitates the use of information from sensors that are only present during the training process and are unavailable during the later use of the system. The method transfers information from the source sensors to the latent representation of the target sensor data through contrastive loss that is combined with the classification loss during joint training. We evaluate the method on the well-known PAMAP2 and Opportunity benchmarks for different combinations of source and target sensors showing average (over all activities) F1 score improvements of between 5% and 13% with the improvement on individual activities, particularly well suited to benefit from the additional information going up to between 20% and 40%.Comment: Presented at Ubicomp/ISWC 202

    MeciFace: Mechanomyography and Inertial Fusion based Glasses for Edge Real-Time Recognition of Facial and Eating Activities

    Full text link
    The increasing prevalence of stress-related eating behaviors and their impact on overall health highlights the importance of effective monitoring systems. In this paper, we present MeciFace, an innovative wearable technology designed to monitor facial expressions and eating activities in real-time on-the-edge (RTE). MeciFace aims to provide a low-power, privacy-conscious, and highly accurate tool for promoting healthy eating behaviors and stress management. We employ lightweight convolutional neural networks as backbone models for facial expression and eating monitoring scenarios. The MeciFace system ensures efficient data processing with a tiny memory footprint, ranging from 11KB to 19KB. During RTE evaluation, the system achieves impressive performance, yielding an F1-score of < 86% for facial expression recognition and 90% for eating/drinking monitoring, even for the RTE of an unseen user.Comment: Submitted to Nature Scientific Report

    Selecting the motion ground truth for loose-fitting wearables: benchmarking optical MoCap methods

    Full text link
    To help smart wearable researchers choose the optimal ground truth methods for motion capturing (MoCap) for all types of loose garments, we present a benchmark, DrapeMoCapBench (DMCB), specifically designed to evaluate the performance of optical marker-based and marker-less MoCap. High-cost marker-based MoCap systems are well-known as precise golden standards. However, a less well-known caveat is that they require skin-tight fitting markers on bony areas to ensure the specified precision, making them questionable for loose garments. On the other hand, marker-less MoCap methods powered by computer vision models have matured over the years, which have meager costs as smartphone cameras would suffice. To this end, DMCB uses large real-world recorded MoCap datasets to perform parallel 3D physics simulations with a wide range of diversities: six levels of drape from skin-tight to extremely draped garments, three levels of motions and six body type - gender combinations to benchmark state-of-the-art optical marker-based and marker-less MoCap methods to identify the best-performing method in different scenarios. In assessing the performance of marker-based and low-cost marker-less MoCap for casual loose garments both approaches exhibit significant performance loss (>10cm), but for everyday activities involving basic and fast motions, marker-less MoCap slightly outperforms marker-based MoCap, making it a favorable and cost-effective choice for wearable studies

    PresSim: An End-to-end Framework for Dynamic Ground Pressure Profile Generation from Monocular Videos Using Physics-based 3D Simulation

    Full text link
    Ground pressure exerted by the human body is a valuable source of information for human activity recognition (HAR) in unobtrusive pervasive sensing. While data collection from pressure sensors to develop HAR solutions requires significant resources and effort, we present a novel end-to-end framework, PresSim, to synthesize sensor data from videos of human activities to reduce such effort significantly. PresSim adopts a 3-stage process: first, extract the 3D activity information from videos with computer vision architectures; then simulate the floor mesh deformation profiles based on the 3D activity information and gravity-included physics simulation; lastly, generate the simulated pressure sensor data with deep learning models. We explored two approaches for the 3D activity information: inverse kinematics with mesh re-targeting, and volumetric pose and shape estimation. We validated PresSim with an experimental setup with a monocular camera to provide input and a pressure-sensing fitness mat (80x28 spatial resolution) to provide the sensor ground truth, where nine participants performed a set of predefined yoga sequences.Comment: Percom2023 workshop(UMUM2023

    Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition

    Full text link
    Recognizing human activities from sensor data is a vital task in various domains, but obtaining diverse and labeled sensor data remains challenging and costly. In this paper, we propose an unsupervised statistical feature-guided diffusion model for sensor-based human activity recognition. The proposed method aims to generate synthetic time-series sensor data without relying on labeled data, addressing the scarcity and annotation difficulties associated with real-world sensor data. By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data. We conducted experiments on public human activity recognition datasets and compared the proposed method to conventional oversampling methods and state-of-the-art generative adversarial network methods. The experimental results demonstrate that the proposed method can improve the performance of human activity recognition and outperform existing techniques
    corecore